Drug Repurposing and Drug Repositioning

Drug repurposing, also known as drug repositioning or drug rediscovery, is the process of identifying new uses for existing drugs that have already been approved for the treatment of one condition. This approach is an alternative to traditional drug development, which can be costly and time-consuming.

Drug repurposing has several advantages over traditional drug development, including reduced costs and a shorter development timeline. In addition, because the safety profile of the drug is already established, the repurposed drug can be brought to market faster than a new drug.

Drug repurposing can be achieved through several approaches, including:

Target-based screening: This involves screening existing drugs against new drug targets.

Phenotypic screening: This involves screening existing drugs against disease models to identify drugs with new therapeutic uses.

Structure-based drug design: This involves using the three-dimensional structure of the drug and its target to identify new uses.

Computational approaches: This involves using computer algorithms and databases to identify new uses for existing drugs.

Drug repurposing has been successful in identifying new uses for several drugs. For example, the drug sildenafil was originally developed for the treatment of angina but was later repurposed for the treatment of erectile dysfunction. Similarly, the drug thalidomide, which was originally used as a sedative, was repurposed for the treatment of leprosy and multiple myeloma.

Overall, drug repurposing is a promising approach to drug development that can significantly reduce the time and cost of drug development and increase the availability of new treatments for patients.

Global Market:

The global drug repurposing and drug repositioning market involves the discovery, development, and commercialization of new therapeutic uses for existing drugs. This approach allows for the identification of new indications, improved efficacy, and reduced development costs and timelines for existing drugs, which have already undergone safety and toxicity testing.

The drug repurposing and repositioning market is driven by the increasing demand for more efficient and cost-effective drug development approaches, the need for new therapies for diseases with limited treatment options, and the growing availability of large-scale data and computational tools for drug discovery.

According to a report by MarketsandMarkets, the global drug repurposing market size is expected to grow from USD 24.2 billion in 2020 to USD 31.0 billion by 2025, at a compound annual growth rate (CAGR) of 5.1% during the forecast period. The increasing demand for more efficient drug development approaches, the need for new therapies for diseases with limited treatment options, and the growing availability of large-scale data and computational tools for drug discovery are driving market growth.

The market is segmented based on application, including oncology, cardiovascular diseases, neurological disorders, and others. The oncology segment dominated the market in 2020, accounting for the largest share of the global drug repurposing market. The segment is driven by the high prevalence of cancer, the need for more effective therapies, and the availability of a large number of existing drugs for repurposing.

North America dominated the global drug repurposing market in 2020, followed by Europe and the Asia Pacific. The dominance of North America is attributed to the presence of a large number of pharmaceutical companies, the high healthcare expenditure, and the growing adoption of advanced drug discovery technologies.

The key players operating in the global drug repurposing and repositioning market include Novartis AG, Pfizer Inc., Sanofi S.A., AstraZeneca plc, and GlaxoSmithKline plc, among others. These companies are investing heavily in research and development activities to identify new therapeutic uses for existing drugs and gain a competitive edge.

Overall, the drug repurposing and repositioning market is expected to experience significant growth in the coming years, driven by the increasing demand for more efficient drug development approaches, the need for new therapies for diseases with limited treatment options, and the growing availability of large-scale data and computational tools for drug discovery.

ALSO READ Drugs and Drug Targets Drug Discovery, Design and Development Pharmacokinetics and Pharmacodynamics Computer Aided Drug Design Drug Metabolism Pharmaceutical Biotechnology Combinatorial Chemistry Novel Drug Delivery Systems Formulations Natural Products Traditional Medicine Drug Repurposing and Drug Repositioning Precision Medicine Personalized Therapies Drug Development and Clinical Trials Biomarker Discovery and Development Biologics and Biosimilars Vaccines and Immunotherapies Steam Cells and Regenerative Medicine Drug Safety and Pharmacovigilance Pharmacogenomics Toxicology Rare Diseases Receptors as Target for Drug Discovery Drugs Affecting the Cardiovascular System Drugs Affecting the Central Nervous System Drugs Affecting Hormonal Systems Chemotherapeutic Agents Antibacterial Agents Antiviral Agents Anticancer Agents The Opioid Analgesics Anti-Ulcer Agents Non-Steroidal Anti Inflammatory Drugs Steroids Antibiotics Antineoplastic Agents Anthelmintics Sulphonamides Artificial Intelligence and Machine Learning in Drug Discovery and Development Genomics and Proteomics in Drug Discovery and Development Gene Therapy and Genome Editing in Treating Genetic Diseases Nanotechnology in Drug Delivery and Imaging Virtual and Augmented Reality in Drug Discovery and Development Patient Engagement and Patient-Centered Drug Development Big Data Analytics in Drug Discovery and Development

Tags
Medicinal Chemistry Conferences 2025 Europe Medicinal Chemistry Conferences 2025 Pharmacology Conferences Drug Design Conferences 2024 Drug Design Conferences Precision Medicine Conferences Medicinal Chemistry Conferences 2025 Canada Traditional Medicine Conferences

+1 (506) 909-0537